

10.0		
- 1		
	SE2000	
Envor	ronmental Log	gger
4	/22/96 10:50	
	10 July 10 10 10 10 10 10 10 10 10 10 10 10 10	
Unit# C	HROME_L	Test 4
Setups:	INPUT 1	INPUT 2
Type	Level (F)	Level (F)
Mode	TOC	TOC
I.D.	P1	P2
Reference	8.985	8.205
SG	1.000	1.000
Linearity	0.000	0.000
Scale factor	10.000	10.096
Offset	0.000	0.210
Delay mSEC	50.000	50.000
Step 1 4/	19/1996 2:00	0:00 PM
Elapsed Time	INPUT 1	INPUT 2
0.00	9.019	8.230
10.00	9.000	8.211

Appendix D.
Non-CLP Ground Water Data.

Sample Number	MW-31	MW-32	MW-33	MW-34
pH	6.68	6.96	6.64	6.74
Specific Conductance (umho/cm)	0.90	0.70	0.90	0.70
Temperature (° C)	10.40	9.10	8.10	10.00
Dissolved Oxygen (mg/l)	13.70	11.60	11.20	12.40
Turbidity (Ntu)	14	0	16	22
Alkalinity (mg/l	285	269	290	263
Total Hardness (mg/l)	380	332	362	325
TDS (mg/l)	492	395	428	399
TSS (mg/l)	11	<10	26	12

Amphenol Franklin Curtis RFI Inorganic Data Validation April 4 & 5, 1996 Soil Samples

1. Introduction

This report summarizes the validation of 9 soil samples and one rinsate blank collected for the Amphenol Franklin Curtis RFI. The samples were analyzed by the Southwest Laboratory of Broken Arrow, OK for metals and cyanide (total and amenable). Data validation was performed according to the USEPA National Functional Guidelines for Inorganic Analysis (1994) and the Project QAPP.

2. Data Package Completeness

The data package was complete and legible. The laboratory did not analyze the field duplicate for MW-31 6.0-8.0 ft. All other analyses requested were completed by the laboratory.

3. Holding Times

All samples were analyzed within the required holding times.

4. Calibration Verification Results

All calibrations were acceptable. Initial calibration verifications (ICV) and continuing calibration verifications (CCV) were analyzed at the appropriate frequency and were within the 90%-110% control limit.

5. Field and Laboratory Blanks

The calibration and preparation blanks for the rinsate sample contained low levels of barium, beryllium, copper, selenium, and thallium at the MDL. The calibration and preparation blanks for the soil samples contained low levels of antimony, cadmium, and copper at the MDL. No qualification is required since the values were too low to affect the sample data. Blanks for cyanide were negative indicating lower absorbance than the first blank analyzed. This also would not affect the quality of the data. All other laboratory blanks contained no detectable contamination.

The rinsate blank contained low levels of copper (22.1 ug/l) and zinc (28.7 ug/l). Metals at theses levels would not affect the soil data. No other elements were detected in the rinsate blank at the reporting limits..

6. ICP Interference Check Sample Results

ICP interference check samples were analyzed at the required frequency and the results were within 20% of the true value.

7. Laboratory Control Sample Results

Laboratory control samples were analyzed at the required frequency and were within the 80%-120% control limit.

8. Laboratory and Field Duplicate Results

A field duplicate was designated on the chain of custody however the laboratory did not analyze the sample. The laboratory duplicate exceeded 30% RPD for the following parameters:

Element	% RPD
Aluminum	76.9
Antimony	39.4
Barium	64.3
Cadmium	34.5
Chromium	57.8
Cobalt	63.4
Copper	98.9
Iron	104.4
Magnesium	77.7
Manganese	75.9
Nickel	46.4
Vanadium	40.9
Zinc	84.6
Cyanide	84.6

Due to the absence of a field duplicate analysis and the poor precision encountered with this sample, the results for the above metals are qualified as estimated (J) in all samples.

Duplicate precision for amenable cyanide on MW-31 6.0-8.0 ft was 200%. This was based on one BDL result (0.5 mg/kg) and the other at 0.74 mg/kg. This result was not qualified due to the proximity to the LOD.

9. Matrix Spike Recovery Results

MS/MSD samples were not designated on the chain of custody. The laboratory did not perform a MS/MSD analysis.

10. Furnace Atomic Absorption Results

Duplicate injections were performed for all furnace elements. All duplicate injections were within 20% RPD.

11. ICP Serial Dilution Results

The ICP Serial Dilutions for iron and manganese exceeded the 10% control limit on all samples. The results for these elements are qualified as estimated (J) due to matrix interference.

12. Post Digestion Spikes

The following furnace post digestion spikes exceeded the 85-115% control limit:

GW-MW-32 6.0-8.0 ft	Thallium, total	55 % R
GW-MW-32 8.8-9.3 ft	Thallium, total	47 % R
	Selenium, total	77 % R
GW-MW-33 6.0-7.0 ft	Thallium, total	49 % R
	Selenium, total	70 % R
	Arsenic, total	78 % R
GW-MW-33 9.0-9.5 ft	Thallium, total	55 % R
GW-MW-34 6.0-8.0 ft	Thallium, total	60 % R
	Selenium, total	70 % R
GW-MW-31 6.0-8.0 ft	Thallium, total	70 % R
	Selenium, total	80 % R
GW-MW-31 14-15 ft	Thallium, total	83 % R
	Selenium, total	84 % R

13. Detection Limit Results

All methods exhibited appropriate sensitivity to achieve the required detection limits.

14. Sample Results

Raw data results were compared with the final report and all values were correctly reported. Based on professional judgment, the data can be used with the qualifications outlined in Table 1.

Amphenol Franklin Curtis RFI Inorganic Data Validation April 4 & 5, 1996 Soil Samples

Sample	MW-32	MW-32	MW-33	MW-33	MW-34	MW-34	MW-31	MW-31
	6.0-8.0 ft	8.8-9.3 ft	6.0-7.0 ft	9.0-9.5 ft	6.0-8.0 ft	17.0-17.5 ft	6.0-8.0 ft	14.0-15.0 ft
Aluminum	1200 J	4260 J	1610 J	2410 J	1600 J	4050 J	1700 J	3530 J
Antimony	3.3 UJ	1.8 UJ	1.9 UJ	2.8 BJ	2.3 BJ	1.8 UJ	2.7 BJ	1.8 UJ
Arsenic	*	*	0.52 BJ	*	*	*	*	*
Barium	5.3 J	32.9 J	7.2 J	21.6 J	11.4 J	46.5 J	15.1 J	46.0 J
Cadmium	0.22 BJ	0.19 UJ	0.20 J	0.25 BJ	0.27 BJ	0.31 BJ	0.28 BJ	
Chromium	3.2 J	6.5 J	3.5 J	5.0 J	4.1 J	7.3 J	4.6 J	6.4 J
Cobalt	1.5 BJ	4.8 J	1.8 BJ	3.7 J	3.0 J	5.0 J	2.7 J	
Copper	5.4 J	12.7 J	7.5 J	8.0 J	9.9 J	13.5 J	15.6 J	
Iron	3850 J	11900 J	3810 J	7790 J	9910 J	10900 J	10200 J	10500 J
Magnesium	65000 J	31600 J	20800 J	54800 J	33200 J	28700 J	39200 J	29500 J
Manganese	149 J	181 J	119 J	191 J	307 J	264 J	637 J	260 J
Nickel	2.9 BJ	18.5 J	4.9 J	5.7 J	10.7 J	13.3 J	10.3 J	13.8 J
Thallium	0.24 UJ	0.25 UJ	0.25 UJ	0.24 UJ	0.023 UJ	*	0.23 UJ	0.3 BJ
Selenium	*	0.31 UJ	0.32 UJ	*	0.29 UJ	*	0.29 UJ	0.31 UJ
Vanadium	5.7 J	10.9 J	4.7 J	8.0 J	6.8 J	10.5 J	8.1 J	9.4 J
Zinc	12.8 J	31.7 J	18.5 J	17.0 J	34.6 J	33.5 J	36.2 J	34.0 J
Cyanide	1.3 J	0.89 J	0.21 BJ	1.5 J	0.64 J	1.3 J	0.33 BJ	0.89 J

^{*} Data point not qualified

Amphenol Franklin Curtis RFI Volatile Organics Data Validation April 4 & 5, 1996 Soil Samples

1. Introduction

This report summarizes the validation of 9 soil samples and one rinsate blank samples collected for the Amphenol Franklin Curtis RFI on April 4 & 5, 1996. The samples were analyzed by the Southwest Laboratory of Broken Arrow, OK for Volatile Organics. Data validation was performed according to the USEPA National Functional Guidelines for Organic Analyses (1994) and the Project QAPP...

2. Data Package Completeness and Accuracy

All forms and data necessary for validation were included in the data package.

3. Holding Times

All samples were analyzed within the two week hold time.

4. GC/MS Instrument Performance Check

BFB was analyzed at the required frequency. Mass spectra for BFB met the required ion abundances.

5. Initial Calibration

The following initial calibration standard RRFs were greater than 30% RSD:

Chloroethane	53.8% RSD
Methylene chloride	98.5% RSD
Acetone	95.6% RSD
2-Butanone	49.0% RSD
Bromoform	31.5% RSD
4-Methyl-2-pentanone	51.1% RSD
2-Hexanone	59.8% RSD
1,1,2,2-Tetrachloroethane	41.9% RSD
2-Chloroethyl vinylether	35.8% RSD

The exceeding of %RSD criteria for these compounds was caused by high RFs in the 5 ppb standard. This deviation would not affect non-detectable samples as it indicates increased sensitivity at the low end of the curve. Only acetone and methylene chloride were detected in the RFI samples. All results for these compounds are considered estimated (J).

All other initial calibration compounds were less than 30% RSD. All RRFs were greater than 0.05.

6. Continuing Calibration Check

The compounds listed in Table 1 exceed 25% RSD in the continuing calibration standard. None of the * compounds were detected in the corresponding RFI samples. Compounds with positive % RSDs do not require qualification since there was sufficient instrument sensitivity to compensate for a lower response.

All RRFs were > 0.05 in the continuing calibration check standard.

Table 1
Continuing Calibration Standard Performance Deviations

Compound	% RSD
Bromomethane*	-56.0
Methylene chloride	54.5
Acetone	43.6
2-Butanone*	38.7
Carbon tetrachloride*	-25.6
4-Methyl-2-pentanone*	40.9
2-Hexanone*	46.0
Vinyl acetate*	40.2

Acetone and methylene chloride were detected in the RFI samples. Results for these compounds are qualified as estimated (J).

7. Blanks

Instrument blanks contained methylene chloride at 4 ug/kg and 12 ug/kg. All samples containing methylene chloride at levels of 20 ug/kg (4/10/96) and 60 ug/kg (4/11/96) are qualified as estimated (JB) due to potential blank contamination. All other instrument blanks were acceptable.

The equipment blank contained 760/730 ug/l of acetone. Results for this compound are qualified as estimated due to potential field contamination. All other rinsate blank compounds were not detected.

8. System Monitoring Compounds

All surrogate recoveries were within acceptable limits.

9. MS/MSD

Trichloroethylene in sample MW 31 6.0-8.0 ft. was recovered at 15% and 86% yielding an RPD of 129%. Results of trichloroethylene in this sample are considered estimated due to matrix problems (J). The %RPD for 1,1-Dichloroethylene was 33%. Results for this compound are considered estimated (J).

All other MS/MSD compounds were within 25% RPD and 75%-125% recovery.

10. LCS

The LCS samples were analyzed at the required frequency and were within acceptable limits.

11. Internal Standards

Internal standards were within acceptable limits for all samples.

12. Detection Limits

RFI detection limits were obtained on all samples.

13. Duplicate Analysis

Field duplicates were within acceptable limits for all compounds except acetone and methylene chloride. These compounds were detected in the blank and therefore, the results are estimated (JB).

14. Data Accuracy

All quanitations were performed correctly. Mass spectra indicated proper compound identification.

15. Overall Assessment of the Data

Based on professional judgment, this data set can be used with the qualification listed on Table 2.

Amphenol Franklin Curtis RFI Volatile Organics Data Validation April 4 & 5, 1996 Soil Samples

Sample	Methylene Chloride	Acetone	Trichloroethylene	1,1-Dichloroethene
MW-31 6-8 ft	8 JB	20 JB	4 J	5 UJ
MW-31 6-8 ft Dup	9 JB	9 JB	5 J	5 UJ
MW-31 14-15 ft	21 JB	20 JB		*
MW-32 6-8 ft	7 JB	6 JB		
MW-32 8.8-9.3 ft	10 JB	20 JB		
MW-33 6-7 ft	8 JB	12 JB		
MW-33 9-9.5 ft	12 JB	27 JB	*	
MW-34 6-8 ft	7 JB	6 JB	•	
MW-34 17-17.5 ft	15 JB	37 JB		
Rinsate Blank	*	*	*	*

^{*} Data point not qualified

Amphenol Franklin Curtis RFI Inorganic Data Validation April 11, 1996 Water Samples

1. Introduction

This report summarizes the validation of 6 water samples and one equipment blank collected for the Amphenol Franklin Curtis RFI. The samples were analyzed by the Southwest Laboratory of Broken Arrow, OK for metals, cyanide (total and amenable), TSS, TDS, hardness, and alkalinity. Data validation was performed according to the USEPA National Functional Guidelines for Inorganic Analysis (1994) and the Project QAPP.

2. Data Package Completeness

The data package was complete and legible. All analyses requested were completed by the laboratory.

3. Holding Times

All samples were analyzed within the required holding times.

4. Calibration Verification Results

All calibrations were acceptable. Initial calibration verifications (ICV) and continuing calibration verifications (CCV) were analyzed at the appropriate frequency and were within the 90%-110% control limit.

5. Field and Laboratory Blanks

The calibration blank for ICP contained 0.6 ug/l of copper. All copper results for samples associated with this blank were qualified as estimated (JB) if they were less than 5X the reported blank concentration (3 ug/l). All other laboratory blanks contained no detectable contamination.

The equipment blank contained the following concentrations of metals:

Total Barium	2.7 ug/l (13.5)
Total Calcium	199 ug/l (995)
Total Copper	2.3 ug/l (11.5)
Total Nickel	2.9 ug/l (14.5)

All results for these elements were qualified as estimated (JB) if less than 5X the reported blank concentration (5x limit). No other elements were detected in the equipment blank.

6. ICP Interference Check Sample Results

ICP interference check samples were analyzed at the required frequency and the results were within 20% of the true value.

7. Laboratory Control Sample Results

Laboratory control samples were analyzed at the required frequency and were within the 80%-120% control limit.

8. Laboratory and Field Duplicate Results

All laboratory duplicates were not designated on the chain of custody. The laboratory did not perform a duplicate analysis. The field duplicate for total iron and aluminum in GW-34 exceeded 30% RPD. All total iron and aluminum results for are qualified as estimated (J) due to poor field precision. All other field duplicate results were less than 30% RPD.

9. Matrix Spike Recovery Results

MS/MSD samples were not designated on the chain of custody. The laboratory did not perform a MS/MSD analysis.

10. Furnace Atomic Absorption Results

Duplicate injections were performed for all furnace elements. All duplicate injections were within 20% RPD.

11. ICP Serial Dilution Results

The ICP Serial Dilutions were acceptable.

12. Post Digestion Spikes

The following furnace post digestion spikes exceeded the 85-115% control limit

GW-MW31	Arsenic, total	83 % R
	Thallium, total	75 % R
GW-MW-32	Lead, total	122 % R
	Thallium, total	79 %R
GW-MW-33	Lead, total	117 %R
GW-MW-34	Thallium, total	65 %R

The results for the above samples are qualified as estimated (J) due to matrix interference.

13. Detection Limit Results

All methods exhibited appropriate sensitivity to achieve the required detection limits. Several samples required dilution to eliminate background interferences.

14. Sample Results

Raw data results were compared with the final report and all values were correctly reported. Based on professional judgment, the data can be used with the qualifications outlined in Table 1.

Amphenol Franklin Curtis RFI Inorganic Data Validation April 11, 1996 Water Samples

Sample	GW-MW-31	GW-MW-32	GW-MW-33	GW-MW-34	GW-MW-34D	GW-EB
Aluminum	219 J	173 J	297 J	122 J	198 J	
Arsenic	1.6 UJ					*
Barium	*	*	*			2.7 JB
Calcium	*	*	*		*	199 JB
Copper	*	0.61 JB	1.1 JB		0.79 J	2.3 JB
Iron	391 J	343 J	514 J	329 J	536	*
Lead	*	1.3 UJ	1.3 UJ	*	*	*
Nickel	0.89 JB		1.9 JB	1.0 JB	1.4 JB	2.9 JB
Thallium	0.9 UJ	0.9 UJ		0.9 UJ	0.9 UJ	*

^{*} Data point not qualified

Amphenol Franklin Curtis RFI Volatile Organics Data Validation April 11, 1996 Water Samples

1. Introduction

This report summarizes the validation of 8 water samples and 1 equipment blank collected for the Amphenol Franklin Curtis RFI on April 11, 1996. The samples were analyzed by the Southwest Laboratory of Broken Arrow, OK for Volatile Organics. Data validation was performed according to the USEPA National Functional Guidelines for Organic Analyses (1994) and the Project QAPP...

2. Data Package Completeness and Accuracy

All forms and data necessary for validation were included in the data package.

3. Holding Times

All samples were analyzed within the two week hold time.

4. GC/MS Instrument Performance Check

BFB was analyzed at the required frequency. Mass spectra for BFB met the required ion abundances.

5. Initial Calibration

The following initial calibration standard RRFs were greater than 30% RSD:

Bromomethane 42.9% RSD Chloroethane 34.4% RSD

The exceeding of %RSD criteria for these compounds was caused by high RFs in the 5 ppb standard. This deviation would not affect non-detectable samples as it indicates increased sensitivity at the low end of the curve.

All other initial calibration compounds were less than 30% RSD. All RRFs were greater than 0.05.

6. Continuing Calibration Check

All continuing calibration compounds were less than 25% RPD.

All RRFs were > 0.05 in the continuing calibration check standard.

7. Blanks

All instrument blanks were acceptable.

The equipment blank contained 68 ug/l of acetone. Results for this compound are qualified as estimated due to potential field contamination.

8. System Monitoring Compounds

All surrogate recoveries were within acceptable limits.

9. MS/MSD

Trichloroethylene and 1,1-Dichloroethylene in samples MW-31 MS/MSD and MW-34 MS/MSD exceeded recovery and %RPD criteria. The results obtained are summarized below:

Sample	Trichloroethylene	1,1-Dichloroethylene	
MW-31 MS	80%	84%	
MW-31 MSD	0%	54%	
RPD	200%	34%	
MW-34 MS	100%	102%	
MW-34 MSD	78%	133%	
RPD	133%	27%	

These results indicate a laboratory problem related to the analysis of these samples. Results for these two compounds are considered estimated (J) for the above samples.

All other MS/MSD compounds were within 25% RPD and 75%-125% recovery.

10. LCS

The LCS samples were analyzed at the required frequency and were within acceptable limits.

11. Internal Standards

Internal standards were within acceptable limits for all samples.

12. Detection Limits

RFI detection limits were obtained on all samples. Several samples contained high levels of halogenated volatile organics that exceeded linear range (MW-31, MW-34, and MW-12). The diluted results should be used for the RFI.

13. Duplicate Analysis

Field duplicates were within acceptable limits for all compounds.

14. Data Accuracy

All quanitations were performed correctly. Mass spectra indicated proper compound identification.

15. Overall Assessment of the Data

Based on professional judgment, this data set can be used with the qualification listed on Table 1.

Amphenol Franklin Curtis RFI Volatile Organics Data Validation April 11, 1996 Water Samples

Sample	Acetone Trichl	oroethylene 1,1-Did	chloroethene
GW-MW-12			
GW-MW-31		130 J	3 J
GW-MW-32	•	*	*
GW-MW-33	•	*	*
GW-MW-34		120 J	5 UJ
GW-MW-34D		160 J	5 UJ
GW-EB	68 J	*	*

^{*} Data point not qualified

Indianapolis Division 6964 Hillsdale Ct. Indianapolis, IN 46250 IBI: (31/) 842-4261 Fax: (317) 842-4286

ANALYTICAL REPORT

Mr. Tim Bannister EMCON 7205 Shadeland Station Suite 120 Indianapolis, IN 46256

08/10/1995

NET Job Number: 95.03158

Client Project ID: AMPHENOL - FRANKLIN

						Prep	Kun	
			Reporting	Date	Analyst	Rarch	Batich	Met.hod
Analyte	Result flag	Units	Limit	Analyzed	initials	NO.	No.	Reference
SAMPLE NO.	SAMPLE DESCRIPTI	ON				DAT	E-TIM	E TAKEN
113763	EFF					08/	03/19	195
ICP HETALS - DISS (AQ)	Complete		Complete	08/09/1995	dak		44	
Arsenic, diss. (ICP)	<0.20	mg/L	∢0.20	08/09/1995	dak		44	9-6010
Cadmlum. diss. (ICP)	<0.005	mg/L	<0.005	08/09/1995	dak		44	5-6010
Chromium, diss. (ICP)	<0.010	mg/L	<0.010	08/09/1995	dak		44	9-6010
Copper, diss. (ICP)	<0.020	mg/L	<0.020	08/09/1995	dak		44	S-6010
Lead, diss. (ICP)	<0.080	mg/1	<0.000	08/09/1995	dak		11	8-6010
Mercury, diss (CVAA)	<0.0005	mg/L	<0.0005	08/08/1995	grf		6	S-7470
Nickel, diss. (ICr)	<0.010	ny/L	<0.010	08/09/1995	dak		44	0-6010
Zinc, diss. (TCD)	€0.020	mg/L	<0.020	08/09/1995	dak		44	S-6010

Indianapolis Division 6964 Hillsdale Ct. Indianapolis, IN 46250

Tel: (317) 842-4261 Fax: (317) 842-4286

OUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

Mr. Tim Bannister EMCON 7205 Shadeland Station Suite 120 Indianapolis, IN 16256

08/10/1995

NET Job Number: 95.03158

				601	CCV		
	Prep	Run	ccv	ccv			
	Batch	Batch	True	Conc	4	II.	Date
Analyce	No.	No.	Value	Found	Rec	Plag	Analyzed
Arsenic, diss. (ICP)		44	5.0	5.21	104		08/09/1995
Cadmium, diss. (ICP)		44	5.0	5.31	106		08/09/1995
Chromium, diss. (ICP)		44	5.0	5.36	107		08/09/1995
Copper, diss. (ICP)		44	5.0	4.98	100		08/09/1995
Lead. diss. (ICP)		44	5.0	5.50	110		08/09/1995
Mercury, dies (CVAA)		6	0.015	0.0151	101		08/08/1995
Nickel, diss. (ICP)		44	5.0	5.30	108		08/09/1995
Zine, dies, (TCP)		44	5.0	5.32	106		08/09/1995
VOLATILE- E-624 (AQ)							
Penzene		859	20.	18.	90		08/04/1995
Bromotorm		853	20.	17.	85		08/04/1995
Chlorobenzene		859	20.	19.	95		08/04/1995
Chloroform		859	20.	20.	100		00/04/1995
Chloromethane		859	20.	23.	115		08/04/1995
1,1-Dichloroethene		859	20.	17.	85		00/04/1995
1,2-Dichloropropene		859	20.	18.	90		08/04/1995
Ethylbenzene		859	20.	10.	90		00/04/1995
Methylene chloride		859	20.	22.	110		08/04/1995
1,1,2,2-Tetrachloroethane		859	20.	19.	95		08/04/1995
Toluene		859	20.	19.	95		08/04/1995
Vinyl chloride		859	20.	20.	100		08/04/1995

Indianapolls Division 6964 Hillsdale Ct. Indianapolis, IN 46250

Tel: (317) 842-4261 Fax: (317) 842-4286

QUALITY CONTROL REPORT BLANKS

Mr. Tim Bannister EMCON 7205 Shadeland Station Suite 120 Indianapolis, IN 46256

08/10/1995

NET Job Number: 95.03158

		Frep	· Nun					
		Batch	Batch	Blank			Reporting	Dace
Analyte		170.	No.	Value	Plag	Units	Limit	Analyzed
			11	<0.20		mg/L	<0.20	08/09/1995
Arseniu, diss. (ICP)			44	<0.005		mq/L	<0.005	08/09/1995
Cadmium, diss. (ICP) Chromium, diss. (ICP)			44	<0.010		mg/L	<0.010	08/09/1995
Copper diss. (ICP)			44	<0.020		mg/L	cu.uzu	08/09/1995
Lead, dlas. (ICP)			44	<0.080		mg/L	-0.080	08/09/1995
Mercury, diss (CVAA)			6	<0.0005		mg/L	<0.0005	08/08/1995
Nickel, diss. (ICP)			44	<0.010		mg/L	<0.010	08/09/1905
Zinc. dias. (ICP)			44	<0.020		mg/L	<0.020	08/09/1995
VOLATILE- E-624 (AQ)								
Acrolein			859	<50.		ug/L	<50.	08/04/1995
Acrylonitrile			859	<50.		ug/1	<50.	09/04/1995
Benzene			859	<5.0		ug/L	<5.0	08/04/1995
Bromodichloromethane			859	45.0		ug/L	<5.0	08/01/1995
Bromoform			859	<5.0		uq/L	<5.0	08/04/1995
Bromomethane			859	<5.0		ug/L	<5.0	00/04/1995
Carbon tetrachloride			859	<5.0		ug/L	<5.0	08/04/1995
Chlorobenzene			859	<5.0		uy/L	.5.0	00/04/1995
Chlorocthano			459	c10.		ug/L	<10.	08/04/1995
2-Chloroethyl vinyl et	her		859	עא		ug/L	ND	08/04/1995
Chloroform			859	48.0		ug/L	<5.0	08/04/1995
Chloromethane			859	€10.		ug/L	<10.	08/04/1995
Dibromochloromethane			859	e5.0		ug/L	<5.0	08/04/1995
1.2-Dichlorobenzens			859	C5.U		ug/L	<5.0	08/04/1995
1.3 Dichlorobensene			859	<5.0		ug/L	<5.0	08/04/1995
1,4-Dichlorobenzene			859	<5.0		ug/L	<5.0	08/04/1995
1,1-Dichleroethane			859	-5.0		ug/L	€5.0	08/04/1995
1.2-Dichlorosthane			859	<5.0		ug/L	<5.0	08/04/1993
1.1-Dichlorosthene			959	45.0		vg/1.	<5.0	OR/04/1995
trans-1.2-Dichloroethe	ne		859	<5.0		ug/L	<5.U	08/04/1995
uls-1.2-Dichloroethene			859	«\$.0		Ug/L	-5.0	02/04/1995
1.2-Dichloropropane			859	c5.0		ug/L	<5.0	08/04/1995
cis-1,3-Dichloropropen	•		820	45.0		119/1.	<5.0	08/04/1995
trans-1.3-Dichloroprop			859	<5.0		ug/L	<5.0	08/04/1995
Ethylbenzene			959	4.S.O		ng/1.	<5.0	08/04/1995

Indianapolis Division 6964 Hillsdale Ct. Indianapolis, IN 46250

Tel: (317) 842-4281 Fax: (317) 842-4286

OUALITY CONTROL REPORT MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Mr. Tim Bannister EMCON 7205 Shadeland Station Suite 120 Indianapolis, IN 46256

08/10/1995

NET Job Number: 95.03158

Analyte	Prep Batch No.	Run Batch No.	Conc. Spike Added	Units	Eample Result	Conc. MB Result	MS % Rec.	Conc. MSD Result	MSD Rec.	RPD	Flag	Dare Analyzed
)		44	1.0	114/1	10.20	1.02	102	0.971	97	1.8		08/09/1995
Armenic, diss. (ICP) Chromium, diss. (ICP)		66	1.0	mg/L	<0.010	0.907	91	0.891	89	1.8		08/09/1995
Cooper, diss. (ICP)		44	1.0	my/L	0.02	0.902	00	0.067	85	1		08/09/1995
Load, diss. (ICP)		44	1.0	mg/L	0.11	0.948	84	0.928	82	2.4		08/09/1995
Mercury, diss (CYAA)		6	0.015	my/L	<0.0005	0.0152	101	0.0140	93	8.1		08/08/1995
Nickel, diss. (ICP)		44	1.0	mg/L	0.03	0.915	89	0.887	86	3.2		08/09/1995
Zinc, diss. (ICP)		44	1.0	wy/L	0.07	0.967	90	0.943	87	2.7		08/09/1995

(28)

AMPI F	n av	NATION ENVI	ONAL RONMEN ING, INC	IIAL	CHA COMPAN ADDRES PHONE PROJEC PROJEC	XY_ XS_ XT NA	EN BANEA IMEA	41- LOC A_	FI CO	54 84	5 mp	(ch)	Ion		EAV		aLYS					P.O. NO.	A STATE OF THE PARTY OF THE PAR
DA RUNT NAM	NE)	Kush		SIGNAT	JEE 1		-	F	A .	and Ty	lc eq	=	1)	3								Is this work being our ducted to enforcement action?	Yes 40
DATE	TIME	s	ANPLE IDIDESCI	A.PTICN		MATRIX	COMP	Š	T	HNO		OTHER	Mar	META			!					USF	NPDE3 Waslewater
3/3		Ew.1			i	V	+	1	4			1	1	2								LUL SAMORES	UNPRESERVE
73		Rw-Z											4							_	_	1	
i	900	RW.3		5000		1		WW	4				V				1						
		522				1		M	4				V	4					-				
		Rw-1			i	1							4	-					1	-	_		
		TRIP &						-	-	-			4	-		91	-	+					
+							+	+		-	T						1						
															-		+	-	-	+	-		
1	-	A Property of					+	+		+		+				+							
																No.							
						-	-	-	-	+		-			7	-	+	+	+	-	-		
500							+	+	-	+		-	TA.				-		+	-	1		0
		OF SAMPLE:	FIELD FILTE	TACZ YES HED Z YES TURN SAMPI QUEST NET	E REMAI	NDE	R TO	CU	ENT	VIA -			RS _			CTT YE	ES/N	000	IA			DATE	
PELINO	UISHEO I	EY:	DATE	TIME	ARS!	Bar),						P	EUNOL	LISHE	D 3V.				8	36	5 5:00 Mg	assa Gut
METH	OD OF	SHIPMENT			REMAR	KS:		_				-	1.			1	,	a	2			7.0	

..... PIA WEE ODG TOW MANAGED VEHOW PLA-CHITCHER COPY- PINK

Dasheno | Corp.

2032658827

Indianapolis Division vérá Hillsdale Ct. Indianapolis, IN 46250 Tel: (317) 842-4261 Fax: (317) 842-4286

ANALYTICAL REPORT

Mr. Tim Pannister EMCON 7205 Shadeland Station Suite 120 Indianapolis, IN 46256

Page 1

Eample Description: EFFLUENT
Job Description: AMPHEMOL - FRANKLIN

Date Taken: 08/04/1995

Date Received: U8/04/1555

<u>Parameters</u>	Results	Elan	Imita	Analyst/	Method	Method POT.
Cyanide - Prep	Complete			ddm / 08/07/1995		Communitée
Cyanide, Total	<0.005		mg/L	ddm / 08/07/1995	B-335.2	<0.005

CHAIN OF CUSTODY RECORD

		TESTING, INC	CO	M-YUN		C//	100	111			,,	1-	,				REPORT T	0: /1/2	DAY.	MIS DE
		B ILOTHIAG, IIA	AD:	DRESS		72	05	01	Sh	20	de las	45	2:	Sta	120)	NVOICE T	2 (5	ame)	
			PH	ONE_		84)	-80	5 9	2		F/	x	841	-06	14		WOICE I	u		
			PRO	OJECT	NAN	ELDO	ATIC	N	TIM	21	ENDL	3	19	AK/I	7		P.O. NO.			
			PRO	OJECT	NUN	BER_		3	71	60	8-00	7			1000		oleman en ter-			
			The second secon	OJECT	MAN	IAGER		//	m	A	anni	uce					NET QUO	ENO		
SANPL	ED BY	ky A. Banni	た イン	11 5	2/	2 -		t	9			A	VALYS	ES		Toe	ssist us in se	lect ng the p	roper method	
PFINT HA	ME)	y s. Danni	STONATURE -	34	110	Nan.	KLA	20	-	-	1					's fri	e work being or plance troritor	onducted for m ing?	ęulatory Yes	No
(PFINT NA	ME)		SIGNATURE				N e	and Tyr	pe cf		ide					3nlo	s work being or reemank action	,	Yes	No
J. Think							T				2					Which	negulations a	oply: PCRA.	NPDES	Wastewaser
DATE	TIME	SAMPLE ID/OESO	PRIPTON .	MATRIX	GRAB	COMP	NaCa	FONE	H2504	N N N N N N N N N N N N N N N N N N N	cya.	1			:	7 365		Other .		None
	te et			MA	5	8 -	Ž	Ē	£	5	3			4				COA	MENTS	
84/5	0825	ESS/Kent			X		X		1		X			1				AL SE		
17/75		200/KEM		-	1.		-		-	-		1		+	-				· · · · · · · · · · · · · · · · · · ·	
				-		-			-	-	-	-		-	-					
							-		-	-		-		-				-		
										_										
																				21 - 27
			Marie Marie San																	
	1754																			300
77.0						1	-		-	1			W 100	11						Share Life
					-	-	-			+		+		1	-	-				
					-	-	-			+		-	-							
						200		-		-										
																			Y. W.	
						-												41.3		
	3511																			
	10 miles			_	-					-						20 20	- Agrico Saga	31 - 32		- STATE (44
				-	-	+	+		+	-		-	-		_	77 77				,
								Ш						1					- M	1860
OOVD	ITION OF	SAMPLE BOTTLES IN FIELD FILTER	RED? YES (NO)				VOLA	SEAL	SFRE	ESE	N AND IN	ACT? Y	ES/NO	NIA		3ottles	RATURE U supplied by	NET? YE	S ON	nicy
SAMP	E REMA		URN SAMPLE REN						MAIN	DER	S					CATE				
BEL WO	J SHED BY:			MED BY:		-					HEUNQUISH	ED 87;			DATE	/ TN		RECEIVED PO	A NET BY:	11
To	K B.K	Bennes 8/4/3												_	8/4	45. 8	200	Tigel	usa	Gent
METH	OD OF S	HIPMENT	REM	ARKS:											,,			1		U

Indianapolis Division 6964 Hillsdale Ct. Indianapolio, IN 46250 Tel: (317) 842-4261 Fax: (317) 842-4296

ANALYTICAL REPORT

Mr. Angelo J. Datillo EMCON 8088 Keystone Crossing Suite 1329 Indianapolis, IN 46240

12/20/1995

NET Job Number: 95.05847

Enclosed are the Analytical Results for the following samples submitted to NET, Inc. Indianapolis Division for analysis:

Project Description: AMPHENOL/FRANKLIN, IN

Sample Number Sample Description

EFFLUENT

126752

Date Taken

Date Received

12/13/1995

12/13/1995

Sample analysis in support of the project referenced above has been completed and results are presented on the following payes. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

Approved By:

andrew Sargeont (PLK)

Project Manager